Doing interviews, coproducing groundwater: tracing the spatial, temporal and vertical (Part 2)

I have organised this article in three parts based on the three key areas of coproduction. Part 1 reflects upon words- words used everyday to describe the topography, the geology, the processes, and practices. Part two focuses on space- space that is not just horizontal but also vertical as we speak about groundwater. This verticality of space urges us to focus on another dimension, a dimension of depth, of thickness, of volume. The third part, that is closely associated and embedded (in some places) with space is that of time. Time is often looked upon as an axis for the past, present and the future, but the verticality of space urges us to look at it within the ground, processes that run across time and within time, occurring simultaneously. 

Sorry, can you say that again

In this first part, I want to draw the attention towards words- words describing groundwater, its understanding, processes, and practices. When I began the interviews, I came across many words which described the landscape and certain characteristics of these landscapes. ‘Raan’ is most used in Osmanabad to describe a land parcel, a farm. I have only encountered Raan in other geographies where it often refers to untended land, forest, etc. For eg. ‘Raan majlay’ was quite common phrase referring to vegetation that grown on land or farms that are not tended or looked after. However, in this field area, raan was used for everything about the landscape- in some places, farm, in some the landscape itself. What was interesting was it was also used to describe the verticality or depth of the landscape with changing rock types or geology while drilling a borewell- ‘raan badalalay’ (raan has changed)

The GSDA and CGWB descriptions of Osmanabad geology commonly use a phrase- ‘moderately dissected plateau’ which can be loosely translated into a description of an undulating topography. This seems to be a peculiar feature of the Deccan Basalt plateau which encompasses more than 80 percent of Maharashtra’s landmass. The GSDA reference manual says that ‘occurrence, storage and movement of groundwater is greatly controlled by morphological set up in Hard Rock terrain.’ Thus, attention to topographical features and its role in shaping water availability (and non), flows, storage and discharge is important. But how is such a moderately dissected plateau brought into everyday discussion. I was first introduced to it through words- words that caught my attention (for I have never heard them before or ignored them for common sense). Many farmers referred to ‘umata’ an upland feature in the watershed, while describing success of sources, duration of water availability in an area. ‘Umata’ were also those farmland parcels wherein water had to be transported through an intricate series of arrangements involving pumps, valves, and pipes. 

The seemingly flat landscape may mislead someone from recognising the relevance of ‘umata’ and ‘jhol’

Other words like lavan (describing the small streams in the area), chaval (a farmland that has peculiar character for water retention- due to its location in the valley area- which again has another word called jhola– opposite of Umata), vapsa (a condition of farm/land when it becomes-or is made suitable for sowing). These words are often associated with a physical/topographical feature, a phenomenon that occurs in the local landscape and thus forms the foundation of knowledge that shapes everyday practices.   

Encountering the water conservation structures in these interviews often meant their association through a particular programme rather than a focus on its properties (like earthen bund or cement bund, weir, bund etc.). For example, I encountered the most common intervention in watershed or water conservation called Cement Nalla Bund (a CNB) through different names and references- in one instance it was a KT Weir (Kolhapur Type Weir), in another it was a Vasant Bandhara (due to its associated with the Vasundhara watershed programme?), while someone pointed out it was a ‘naala bandh’. In such cases, an interview conducted in the farm revealed interesting insights than the same conducted in other settings (room, office etc.). 

Of patta, pokali and percolation

Space forms another dimension in my analysis of these interviews. How space is described and mobilised to draw attention to the processes and practices of groundwater has immense value to pursue such a coproduction of groundwater knowledge. 

While describing Deccan Basalts, the word ‘flows’ (or layer, in some places) is often used to identify rock strata that may be conducive or non-conducive for groundwater accumulation and movement (see this for example). I encountered these flows through ‘patta’ (literally belt) described by farmers as extensive subsurface belt of certain rock type that enables identification and movement of groundwater. It is interesting to note that I encountered ‘patta’ only in descriptions of shallow (or unconfined) aquifers or subsurface. Never I came across the word ‘patta’ to describe a spatial extent in context of deeper subsurface or confined aquifers. While assumptions about such patta did need observations of multiple open dugwells, the relative confidence while making these claims was much higher than the often ‘fate driven’ search for water in deeper spaces of the earth through drilling of borewells. 

Laal Patta (Red Belt/Layer) visible in a dugwell

In other instance, such a loose rock stratum, a stratum that is so porous that is makes it ‘mau’ (soft) in description was also referred as a ‘pokali’ (a vacuum). That groundwater is not available until the beginning of this strata of pokali. While this is not a literal vacuum but is occupied by extremely conducive rock types like the red layer or highly weathered vesicular basalt (mau manjarya), it was useful for bringing our attention to those shifts in imagination accompanied by possibility of groundwater in those spaces. I believe, these patta and pokali describe aquifers in the area that has shaped a collective experience of knowing, locating, and accessing groundwater. 

While discussing borewells, the talk often narrowed down, it moved towards experiences of the sources themselves and no major claims about the subsurface were discussed as seen in case of shallow aquifers. However, a typology of confined aquifers, deeper subsurface groundwater did emerge through those interviews. Through their experiences of drilling borewells and those of others in the village, a classification was brought into notice. It consisted of a Doh system (can be translated, in hydrogeological sense, into a perched aquifer type system) where the borewells did struck water but did not sustain over two or three seasons eventually becoming intermittent. ‘Doh’ means a small pond like water body- usually referred in case of surface water bodies. In other cases, thanks to ones nashib (fate), the borewell struck the jhara or a nasthat ensured a perennial and long-lasting source as compared to a doh. It is interesting to note the shift in describing groundwater in shallow and deeper systems. In shallow, reference to patta meant geological feature (lal gerucha patta) while an extension in deeper systems transformed into the water flow itself (‘panyacha’ jhara or ‘panyachi’ nas) rather than emphasizing the geological feature. This understanding about sources and through them about the subsurface has led to series of practices around borewells like transferring water from them to dugwells, reboring failed borewells, deepening the bore further to improve storage etc. 

Ballestero suggests that thinking about groundwater, thinking about these rock formations ‘require a form of volumetric thinking that is only possible by articulating horizontality and verticality’ (2019). It is here that I bring attention to this verticality of imagination, observation, and practices. In these interviews, verticality was brought into reference through two key points- water levels and depth of sources. While water levels fluctuated, depth was often static- a given character in the drama of groundwater. Though water levels are the most valued ‘data input’ to arrive at groundwater understanding, it was one of the most diversely understood parameter. Asking about ‘paani patali’ meant a variety of things and its context. For example, it was often associated with drought or water scarcity years. It was not seen as something that has progressed over the years (like water level has depleted) but rather something that fluctuates every year. 

The temporality of groundwater

Continuous use of groundwater leads to falling water levels over the years. An observer of data for many decades may easily reach to this conclusion. However, in the process, we miss the intergenerational aspects of such change. What was true for many older people in the village was a fiction for the younger farmers today. That streams in the village flowed even during the summers (little, but did flow), that dug wells needed to be only 25-30 feet deep can only be a fragment of old age imagination. This transformation of rural landscapes over decades has led to a transformation in ways of knowing groundwater, accessing, and using it. 

A newspaper article describing increase in post monsoon water level in the district

In short term-like within few years, this temporality, unlike a linear progression, shifts back and forth across the axis. Water levels, discussed above, are often changing- depleting and recovering, a phenomenon that was associated with series of related events- extraction for irrigation, transfers from deeper aquifers, droughts, rainfall (excess, unseasonal etc.). 

Many farmers complained about sources of groundwater drying up by March marking the beginning of a summer with scarce water supply, intermittent borewells, poorer recovery in dug wells etc. ‘Percolation’ while being a spatial process- movement of water from one point to other, also has a temporal component that is well understood by the users. Instead of taking permits for lift irrigation from tanks, farmers prefer to buy lands near tanks wherein restrictions on extraction during summers are not applied. In comparison, tanks, when they reach dead storage are banned from use for irrigation with confiscation of lifting devices, cutting off electricity supply etc. However, officials cannot restrict the process of percolation which causes water from the tank to percolate in the wells nearby. Thus, temporality of groundwater movement is well understood and mobilised by farmer community. 

Many of us often come across phrases/sentences like ‘our village our water’, ‘not letting any water outside our village’ etc. Farmers, though, in some parts of the watershed must pump out water from wells during the monsoons- a purposeful activity aimed at reducing soil moisture and thus water retention in farms, to ensure crop productivities. When asked if this counters the need for recharging more and more groundwater during and after monsoon on which many government programmes are focused, they suggested the inequities of land properties mandated some to undertake such an activity. The farmers in ‘chaval jameen’ (land prone to water retention) resorted to such an activity. It was a contradiction of sorts that a MGNREGA supported in-situ dugwell recharge programmes aims to do exactly the opposite. This seemingly rebellious act is not seen as one damaging the larger objective of improving groundwater situation in the village by letting off water ‘outside of the watershed or the aquifer’. 

Movement of groundwater is another aspect that I will write sometime soon. The reason is simple- the topic demands its own attention and much of the interventions or strategies for groundwater conservation, recharge and improving access have been shaped around theories and experiences of groundwater movement. Starting with the most basic as to why pumping one well (or not pumping) affects other wells in the vicinity, why most wells are near streams, why naala deepening benefits certain wells and not others, why are horizontal boreholes drilled in the dugwells, why drilling of one borewell leads to failure of other or why increasing borewells in a landscape lead to loss of water from dugwells. There are a lot of tensions, inconsistencies and substantiating examples emerging from pursuing these questions in the interviews, and I hope to write about it in the next blog. 

Doing interviews, coproducing groundwater: tracing the spatial, temporal and vertical (Part 1)

When interview research method meets groundwater

Interviewing is cornerstone of any qualitative research. There are many different approaches to organising and conducting these and I would not go into the details about their typologies as that is not the intention of this article. My key interest here is- what happens when the interview as a research method meets hydrogeology? What happens when interviews themselves and through them enable groundwater understanding? I trace these questions and put down my observations based on my experiences of using un/semi structured interviews during my PhD fieldwork. 

Before I dive in further into the article, I need to highlight that I am no expert when it comes to qualitative research or for that matter using/deploying research tools. Much of what is presented here is through my use of interviews ‘in the field’ and ‘through the process’ of evolving the approach. When I began the fieldwork, much of the discussions were unstructured that evolved into semi-structured method of interviews. However, the linearity as the earlier sentence suggests may not be visible in the process. 

I interviewed farmers, community members, Krushi mitra (agriculture extension officers), Jalsurakshak (water extension officer) and elected members of various village level committees. While I also interviewed scientists, government officials, and practitioners from NGOs as well as subject experts, much of the focus of this article and the emerging understanding is based on my interactions in the villages. I did much of this fieldwork in Osmanabad district of Maharashtra, although I also ventured in other districts a bit like Jalna and Ahmednagar. 

Doing interviews, coproducing groundwater

The reason I describe this as coproduction of groundwater is for two key reasons: as a researcher, I position myself with a background of working in this sector which brings in my own understanding to the field as well as to the process. In turn, this has led to shaping the approach I took for these interviews, the way questions were shaped and organised in the interviews and while conducting the interviews how the responses led to emerging questions which were again shaped by my understanding of the subject and field. Thus, at the outset, I want to shed the image of an ‘objective researcher’ towards the one of an ‘active researchers’ who equally contributed to the coproduction of this understanding presented here. 

Secondly, participant farmers and members of the community engaged with me through a certain notion of my background and identity- a urban, upper caste, researcher doing some research in a faraway university and someone, who possibly, may contribute to some beneficial work in the community/village. Having introduced through an NGO, this further escalated expectations that I did best to address but not quell. Recognising this mutual relationship was important in collectivising understanding of groundwater that led to its coproduction. 

The key contribution I wish to make through this article is to establish an approach that can inform ways of understanding groundwater beyond the ‘techniques of hydrogeology’- to develop understanding of groundwater through qualitative research methods that relies on oral histories, memories (individual and collective), everyday practices, experiential and traditional knowledge. Doing so, I hope it will contribute, through epistemological intervention, a shift from a techno-scientific discourse towards a more grounded and engaging process that values groundwater knowledge making as an everyday process . In doing so, I hope it also quells the dichotomy of indigenous vs modern knowledge, of good vs bad data, of scientific and superstition. 

Experiences across space and time

Like most interview situations, there are certain characteristics that determine the nature of the interview. I identify three: place where the interview is conducted, time of the year when the interview happens, and participant background, although, I think there may be many more. While participants background has been identified as an important criterion while doing and assessing interviews in many other settings, I would like to emphasize on the place and time of interviews from groundwater perspective. 

Water moves, stops, percolates, evaporates and saturates rocks. Water is pumped, contaminated, transported and stored. These things make it important to acknowledge and value the place and time of the interviews. I conducted most of the interview in the farms, near the wells, walking along the farm bunds, near the standing crops. I spoke to some farmers across the watershed, in upstream and downstream areas, near the stream and away from them, in irrigated farms, and in rainfed farms, near storage structures (like percolation tanks, storage tanks), and away from them. I did speak to some in their home, in their kitchen, understanding how water is brought in, or is supplied, how it is stored and used. These proved important as places determined the spaces that groundwater occupies and shapes- its flows, the porous rocks, directions of flow, behaviour of wells, ways of storing it, getting the infrastructure in place etc. 

At the same time, during what time of the year I conducted the interviews also shaped the discussions. While I began the discussions in the field as the summer of 2022 set in, many of the in-depth interviews began with the onset of monsoon. For example, interviews conducted in the summer consisted of observations and experiences during that period of the year- borewells stopping and starting, dug-wells being filled up from borewells, recovery of the well, new borewells being drilled etc. Interviews during the onset of monsoon focused on soil moisture, making land eligible for sowing, percolation from storages into dug-wells etc. Such diverse discussions meant a spectrum of groundwater practices and knowledges being dwelled upon. 

In the next part of the article, I will outline the key learning that has emerged from this experience. I have certain aspects that I have come to focus as I have begun re-hearing these interviews and in the process being transported back to those places and times of the year 2022. 

पाण्याच्या सुरक्षिततेच्या दृष्टीने महत्वाची पाण्याची गुणवत्ता- स्थानिक पातळीवर कसे समजून घ्यायचे?

पाणी म्हंटले की दोन गोष्टी महत्वाच्या ठरतात- पाण्याचा पुरवठा आणि त्याची गुणवत्ता. जागतिक पातळीवर मान्य केल्या गेलेल्या शाश्वत विकासाच्या ध्येयांमधील सहा क्रमांकाचे ध्येय हे चांगल्या पाण्याची उपलब्धता सर्वांना व्हावी हा निकष अधोरेखित करतं. अर्थातच आपल्या देशात हे का महत्वाचे धोरण आहे हे बघायला मिळतं. एका आंतरराष्ट्रीय स्वयंसेवी संस्थेने केलेल्या अहवालात असे म्हंटले आहे की भारतामध्ये जवळ जवळ १६०० लाख लोकांना आपल्या घराजवळ स्वच्छ आणि शाश्वत पाणी पुरवठा होत नाही असे समजते. आपल्या देशामध्ये पेयजल पुरवठ्याच्या दृष्टीने अजून बरेच काम होणे गरजेचे आहे.

याच उद्देशाने  केंद्र शासनाने गेल्या वर्षी जल जीवन मिशन ची घोषणा केली. प्रामुख्याने ग्रामीण भागासाठी असलेली ही योजना प्रत्येक कुटुंबाला २०२४ पर्यंत घरामध्ये नळाच्या माध्यमातून पाणी पुरवठा करण्याचा उद्देश मांडते.  असे आपल्या देशाने पहिल्यांदा जाहीर नाही केले आहे. ही १२वी वेळ आहे अशी घोषणा करण्याची! याआधी देखील राजीव गांधी पेयजल कार्यक्रम, राष्ट्रीय ग्रामीण पेयजल कार्यक्रम अश्या अनेक कार्यक्रमांच्या माध्यमातून ग्रामीण लोकसंख्येला पाणी पुरवठा करण्यासाठी योजना आखल्या गेल्या होत्या. पण मग असे नेमके काय झाले की अशी घोषणा आपल्याला १२व्या वेळी करावी लागतेय? नक्कीच काही महत्वाचे प्रश्न अजून अनुत्तरित राहताय किंवा आपल्या योजनेच्या आखणी आणि अंमलबजावणी मध्ये काहीतरी उणीव आहे. हा एका स्वतंत्र लेखाचा विषय ठरू शकतो. सदर लेख हा पेयजल सुरक्षिततेच्या दृष्टीने महत्वाच्या अश्या पेयजल गुणवत्तेवर आधारित आहे.

जल जीवन मिशन च्या कार्यप्रणालीची ऑपरेशनल गाईडलाईन्स किंवा मार्गदर्शक सूचना केंद्र शासनाने या वर्षीच्या जानेवारीमध्ये प्रकाशित केल्या. जल जीवन मिशनच्या अंमलबजावणीसाठी मोठे प्रयत्न आणि तयारी शासनाने केली होती पण आलेल्या कोरोना जागतिक महामारीमुळे हे काम थंडावले आहे. अर्थातच प्राधान्याने पहिले कोरोनाचा नायनाट करण्याकडे शासनाचा कल आहे. तर या मार्गदर्शक सूचनांमध्ये असे अधोरेखित केले आहे की २०२४ पर्यंत प्रत्येक कुटुंबाला ठरवलेल्या गुणवत्तेचे पाणी मिळाले पाहिजे. ठरवलेले म्हणजेच प्रिस्क्राइबड, म्हणजे नक्की काय? तर भारतीय मानक ब्युरो ने ठरवून दिलेल्या पेयजल निकषांच्या आधारावर पाण्याची गुणवत्ता ठरवण्यात आलेली आहे. ह्याची अंमलबजावणी नीट व्हावी तसेच याची देखरेख करण्यासाठी म्हणून शासनाने राष्ट्रीय पाणी गुणवत्ता सब-मिशनची स्थापना केली आहे (२०१७ मार्चमध्ये). याचा उद्देश मार्च २०२१ पर्यंत देशातील जवळपास २७००० प्रदूषित (पेयजलाच्या दृष्टीने) गावांमध्ये सुरक्षित पाण्याची उपलब्धता करणे हा आहे. त्यासाठीच याची स्थापना करण्यात आली आहे.

पण स्थानिक पातळीवर पाणी गुणवत्तेची देखरेख कोण करणार? त्यासाठी या मार्गदर्शक सूचनांमध्ये स्थानिक स्वराज्य संस्था आणि त्यांच्या अख्यारीत येणाऱ्या विविध समित्या यांच्यावर जवाबदारी दिली आहे. ग्राम पंचायत, पाणी पुरवठा आणि स्वच्छता समिती पाणी गुणवत्तेची देखरेख कशी करणार? त्यासाठी त्यांना कोणत्या गोष्टींची मदत होऊ शकते, कसले प्रशिक्षण उपयुक्त ठरेल? आजपर्यंतच्या गावपातळीवर कामाच्या अनुभवातून काही अंशी या प्रश्नांची उत्तरं अप्रत्येक्षपणे देण्याचा प्रयत्न या लेखात केला आहे. फिल्ड टेस्ट किट यांचे महत्व काय आणि काही पाणी गुणवत्तेच्या घटकांसाठी ते कसे वापरता येईल हे मांडण्याचा प्रयत्न इथे आहे. हा लेख परिपूर्ण नाही पण त्यादिशेत एक प्रयत्न आहे.

ACWADAM मध्ये काम करतांना नियमितपणे पाण्याच्या गुणवत्तेवर काम केले जाते. अर्थात भूजल शास्त्राच्या संदर्भात म्हणायचे झाले तर याचा उपयोग वेगवेगळे भूजलधारक समजण्यासाठी आणि तसेच पुनर्भरण झालेल्या पाण्याचे वय (कधी पुनर्भरण झाले असावे) समजून घेण्यासाठी केले जाते. यातील अनेक चाचण्या या मान्यताप्राप्त अश्या लॅबमध्ये केल्या जातात. पण या कामाचा एक महत्वाचा भाग हा की केलेले काम लोकांपर्यंत नेता आले पाहिजे, तसेच या चाचण्यांचा किंवा माहितीचा उपयोग लोकांना योग्य ते निर्णय घेण्यासाठी करता आला पाहिजे. त्यामुळे ACWADAM च्या अनेक प्रकल्पांमध्ये आम्ही फिल्ड टस्ट किट वापरतो. फिल्ड टेस्ट किट म्हणजे नक्की काय आणि पाण्याची गुणवत्ता तपासतांना नक्की कोणते निकष महत्वाचे ठरतात यासंदर्भात अनुभव पुढे मांडत आहे. इथे एक गोष्ट ध्यानात घेतली पाहिजे की प्रामुख्याने पुढील मांडणी ही भूजलाच्या संदर्भात होणार असून, भूपृष्ठीय पाण्याच्या गुणवत्तेविषयी जास्त मांडणी पुढे नाही. ACWADAM चे काम हे मुख्यतः भूजलावर आहे आणि दुसरी महत्वाची बाब म्हणजे आपल्या देशातील जवळ जवळ ८५ ते ९० टक्के ग्रामीण पाणी पुरवठा हा भूजलावर आधारित आहे. त्यामुळे हे क्रमप्राप्तच आहे असे आपण समजूया.

women drawing water from common well at manyali.JPG
आपल्या देशामध्ये जवळ जवळ ८५ ते ९० टक्के ग्रामीण पाणी पुरवठा भूजलावर आधारित आहे

फिल्ड टेस्ट किट

पाण्याची गुणवत्ता तपासणी करणे ही एक जटिल कृती आहे. अनेक गोष्टी ध्यानात ठेऊन, नक्की काळजी घेऊन चाचणी करणे अपेक्षित असते. याचे कारण असे की पाण्याचे अनेक गुणधर्म हे स्थळ-काळानुरूप बदलत असतात. एक उदाहरण द्यायचे तर बायोलॉजिकल ऑक्सिजन डिमांड (बी.ओ.डी) म्हणजेच पाण्यामधील सजीव गोष्टींची ऑक्सिजनची गरज. हे मोजत असतांना समजा आपण एक सॅम्पल जमा करून ते आपल्या संस्थेच्या/कॉलेजच्या लॅबमध्ये नेले तर यामध्ये गेलेला वेळ हा महत्वाचा ठरतो. याचा परिणाम त्या पाण्याचा अचूक बी.ओ.डी काढण्यावर होऊ शकतो. त्यामुळे अनेकदा ज्याठिकाणी आपण सॅम्पल गोळा करणार आहोत तिथेच या चाचण्या करण्यावर भर असते. अर्थात सगळ्याच गुणधर्मांच्या चाचण्या तिथल्यातिथे करणे शक्य नसते. तेव्हा काही नियमावली पाळून ते सॅम्पल आपण आपल्या चाचणी केंद्रात नेऊ शकतो.

फिल्ड टेस्ट किटचा सगळ्यात मोठा फायदा- स्थानिकांना त्यांच्या गावातच त्यांच्या पाण्याच्या गुणवत्तेविषयी कळते)

जिथे सॅम्पल गोळा केले तिथेच चाचणी करण्यासाठी विशेष चाचणी संच तयार केले जातात त्यालाच आपण ‘फिल्ड टेस्ट किट’ म्हणतो. अनेक प्रकारचे गुणधर्म ह्या फिल्ड टेस्ट किट च्या साहाय्याने केले जातात. कोणते फिल्ड टेस्ट किट निवडावे, त्याचे काही निकष आहेत का? खालील काही बाबींचा विचार फिल्ड टेस्ट किट निवडतांना नक्की करता येईल –

१. ते फिल्ड टेस्ट किट कोणत्या संस्थेने/कंपनीने बनवले केले आहे

२. ते फिल्ड टेस्ट किट प्रमाणित (calibrated) आहे का- तसेच त्याला कोणत्या प्रकारचे सर्टिफिकेशन आहे का हे बघणे महत्वाचे आहे

३. त्या टेस्ट किट ला काही एक्स्पायरी डेट आहे का- ते किती काळ टिकू शकतात

४. त्या किट सोबत त्याचा वापर कसा करायचा याबद्दल काही माहितीपत्रक आहे का

५. ते किट पुनर्प्रमाणीत (re-calibrate)  करण्यासाठी त्याचे साहित्य सोबत दिले जाते का

६. त्याची किंमत काय आहे – स्पेअर पार्टची उपलब्धता सहज आहे का

अर्थातच हे सगळेच निकष जरी फिल्ड किट ने पूर्ण नाही केले तरी सगळ्यात महत्वाचे असे दोन निकष यामध्ये आहेत- ते म्हणजे प्रमाणित असणे आणि त्यासोबत एक माहितीपत्रक असणे. हे तपासून घेणे महत्वाचे आहे. तुम्हाला याविषयी अधिक जाणून घ्यायचे असेल तर हा युनिसेफ ने तयार केलेला रिपोर्ट नक्की बघा. यात विविध संस्थांनी/कंपनीने निर्माण केलेले फिल्ड टेस्ट किटची तुलना केली आहे.

गुणधर्म आणि त्यांची तपासणी 

या भागामध्ये आपण पाच महत्वाच्या गुणधर्म तपासणी संदर्भात माहिती घेणार आहोत:

१.एकूण घुलीत पदार्थ (टी.डी.एस) २. सामू (pH) ३. फ्लुराईड ४. नायट्रेट ५. जैविक प्रदूषण

त्यासोबतच आजपर्यंतचा अनुभव बघता कोणते फिल्ड किट आम्ही वापरले आहेत आणि ते चांगले ठरले आहेत हे देखील मांडणार आहे. फिल्ड टेस्ट किटचा सगळ्यात मोठा फायदा म्हणजे स्थानिकांशी संवाद साधण्याची, स्थानिकांचे त्यांच्या संसाधनाच्या गुणधर्माविषयी माहिती मांडणे यासाठी नक्कीच उपयोग होतो.

१. एकूण घुलीत पदार्थ (टोटल डिसॉल्व्हड सॉलिड्स यापुढे टी.डी.एस) 

टी.डी.एस हा पाण्याचा गुणधर्म अतिशय महत्वाचा असा गुणधर्म आहे. यामधून आपल्याला पाण्यामध्ये विरघळलेल्या एकूण पदार्थांची माहिती मिळते. नक्की कोणते क्षार विरघळले आहेत ते कळणे कठीण असले तरी पाण्याच्या गुणवत्तेचा अंदाज ठरवणे यावरून महत्वाचे ठरते. भारतीय पेयजल निकषांच्यानुसार हे एक लिटर पाण्यामध्ये ५०० मिलिग्रॅम पर्यंत चालते किंवा ज्याला डिझायरेबल असे म्हणतात. याचाच अर्थ ५०० मिलीग्राम प्रतिलिटर पर्यंत टी.डी.एस असलेले पाणी पिण्यासाठी आरोग्यास हानिकारक नाही असे म्हणायला हरकत नाही. त्याउपर ५०० ते २००० मिलिग्रॅम प्रतिलिटर हे ज्याला परमिसिबल किंवा पर्याय नसल्यास हे चालेल असे म्हणता येईल (शक्यतो टाळावेच). यामुळे शरीरावर नक्कीच काही दीर्घकालीन परिणाम होऊ शकतात. तर २००० मिलिग्रॅम प्रतिलिटर पेक्षा जास्त टी.डी.एस असलेले पाणी पिणे टाळणे अतिशय महत्वाचे आहे.

टी.डी.एस संदर्भात काही महत्वाच्या गोष्टी-

१. अनेकांचा अनुभव असा आहे की टी.डी.एस चे प्रमाण हे विहिरींमधील पाण्यापेक्षा बोअरवेल मधील पाण्यामध्ये जास्त आहे. याचे एक मुख्य भूगर्भशास्त्रीय कारण म्हणजे पाण्याचा दगडांशी जास्त काळ झालेला  संपर्क. पावसाचे पाणी जेव्हा जमिनीत मुरते तेव्हा ते पहिले आपल्याला विहिरीमध्ये मिळते. त्यानंतर काही पाणी खाली झिरपते आणि त्याचा दगडांशी जास्त काळ संपर्क होतो आणि म्हणून त्या दगडांमधील खनिज आणि इतर पदार्थ पाण्यात विरघळतात आणि आपल्याला ते बोअरवेल मध्ये मिळते. त्यामुळे अनेकदा बोअरवेल च्या पाण्याचा टी.डी.एस हा विहिरीपेक्षा जास्त असतो.

२. टी.डी.एस म्हणजे गढूळपणा नव्हे. गढूळपणा म्हणजे ज्याला turbidity म्हणतात, त्यामध्ये पदार्थ विरघळेलेले नसून त्याच्या मूळ अवस्थेत पाण्यामध्ये सापडतात. त्याला आपण टोटल सस्पेंडेड सॉलिड्स असे देखील म्हणून या. अर्थात turbidity ची व्याख्या इतक्यापुरती मर्यादित नाही. आपल्याला इथे हे समजून घेणे महत्वाचे आहे की टी.डी.एस म्हणजे turbidity नव्हे.

त्याच विहिरी, हापसे आणि बोअरवेल मधील पाण्याच्या टी.डी.एस मधील पावसाळ्यातील आणि उन्हाळ्यातील फरक (निळी-सप्टेंबर, नारंगी- फेब्रुवारी)

३. वरील आलेख बघा.पावसाळ्यानंतर आणि उन्हाळ्यातील टी.डी.एस यामध्ये आपल्याला अनेकदा तफावत आढळते. एकाच स्रोताचे दोन वेगवेगळ्या वेळी आपण पाण्याचे नमुने तपासले तर आपल्याला त्यामध्ये फरक आढळतो. याचे एक कारण असे की पावसाळ्यानंतर जमिनीमधील पाण्याची उपलब्धता (भूजलाचा साठा) जास्त असते, त्यामुळे ज्याला आपण dilution factor म्हणतो तो जास्त असल्याकारणाने टी.डी.एस कमी असतो. पावसाळ्यानंतर जसा जसा उपसा वाढत जातो आणि जमिनीतील पाण्याची उपलब्धता कमी होते, म्हणजेच भूजल कमी होते, तेव्हा dilution ची क्षमता कमी होते म्हणून पाण्यातील टी.डी.एस वाढते.

टी.डी.एस तपासण्यासाठी हे उपकरण चांगले आहे, ज्याला ट्रेसर असे देखील म्हंटले जाते. बाजारात अशी अनेक उपकरणं आहेत पण त्यातील हे वापरून बघितल्यामुळे याविषयी सांगू शकतो. आजची याची किंमत जवळपास १८००० रुपये आहे पण यामध्ये आपण अनेक सॅम्पल करू शकतो. काळजी फक्त दोनच गोष्टींची घ्यायची- त्याची बॅटरी संपली कि ती बदलायची (अनेक काळ चालते २-३ वर्ष तरी) आणि दर ४०-५० सॅम्पल नंतर आपण याला re-calibrate म्हणजेच पुनर्प्रमाणीत करावे. हेच उपकरण आपण सॅम्पल ची क्षारता, सामू, तापमान मोजण्यासाठी करू शकतो. याचे अनेक फायदे आहेत- कुठेही आपण पाण्याची तपासणी करून तिथल्या तिथे निष्कर्ष काढू शकतो, लोकांना लगेच कळवू शकतो, त्याचबरोबर ते वॉटरप्रूफ आहे त्यामुळे पावसाळ्यात, पाण्यात पडले तरी काळजी नाही (म्हणून मुद्दाम पाडू नका!) हेच उपकरण आपण सामू साठी वापरू शकतो.

ट्रेसर उपकरणाचा वापर करून रावणगावच्या विहिरींमधील पाण्याचा टी.डी.एस, सामू आणि इतर घटक तपासतांना माझे सहकारी

२. सामू (pH)

पाण्याचा सामू म्हणजेच पाण्याचे आम्ल (ऍसिडिक) आणि विम्ल (अल्कली) गुण निर्देशित करणारे परिणाम मूल्य. हे मूल्य १ ते १४ या मूल्यपट्टीत आपण मोजतो. ७ पेक्षा कमी असल्यास ते पाणी अम्लीय असते तर ७ पेक्षा जास्त असल्या ते अल्कली असते. ७ असल्यास आपण त्या पाण्याला न्यूट्रल म्हणतो. पिण्याच्या पाण्याचे निकष बघता सामू हा ६.५ ते ८.५ यामूल्यांमध्ये असला पाहिजे. त्यापेक्षा कमी किंवा जास्त सामू असलेले पाणी हे पिण्यासाठी योग्य नाही असे भारतीय मानक ब्युरो आणि जागतिक आरोग्य संघटनेचे म्हणणे आहे.

सामू मोजण्यासाठी अनेक प्रकारे ते करता येऊ शकते. सगळ्यात सोप्पे म्हणजे सामू मोजणी पट्ट्या वापरणे. कागदाच्या ह्या पट्ट्यांच्या रंग सामू अमली किंवा अल्कली असल्यास त्यानुसार बदलतो. दुसरे वर म्हंटल्याप्रमाणे आपण ट्रेसर उपकरणाचा वापर करून देखील सामू किती आहे हे बघू शकतो.

३. फ्लुराईड

फ्लुराईड हे पाण्यामध्ये आढळणारे एक नैसर्गिक घटक (element) आहे. फ्लुराईड हे आपल्या शरीरासाठी आवश्यक आहे. त्यामुळे आपले दात आणि हाड यांची घडण होते (म्हणून आपल्या टूथपेस्ट मध्ये देखील ते बरेचदा असते). पण गरजेपेक्षा अतिरिक्त फ्लुराईडचे सेवन केल्यास ते शरीरासाठी धोक्याचे ठरू शकते.

अनेक पाश्चिमात्य  देशांमधील पाणी पुरवठा यंत्रणेमध्ये फ्लुराईड युक्त पाण्याचा पुरवठा केला जातो. पण जगभरातील अनेक प्रदेशांमध्ये विशेषतः जिथे भूजलावर लोक निर्भर आहेत आणि खडकांमध्ये ते भूजल आढळते तिथे अनेकदा प्रमाणाबाहेर फ्लुराईड आढळते. भारतामध्ये फ्लुराईडचे मान्य प्रमाण हे १ मिलिग्राम प्रतिलिटर आहे आणि जास्तीतजास्त ते १.५ मिलिग्रॅम प्रतिलिटर आहे, त्यापेक्षा अधिक असल्यास ते धोक्याचे आहे. फ्लुराईड संदर्भात माहितीचा प्रसार, जनजागृती आणि विविध घडामोडींचे संकलन हे फ्लुराईड ऍक्शन नेटवर्क करतं. महाराष्ट्रात असे अनेक जिल्हे आहेत जिथे फ्लुराईडचे प्रमाण याहून जास्त आहे. यवतमाळ आणि चंद्रपूर ही दोन उदाहरणं- आतातर अनेक जिल्ह्यांमध्ये ते आढळू लागले आहे. महाराष्ट्रामध्ये फ्लुराईड आढळलेले अनेक भाग आहेत. खालील नकाशा बघा (२०१३-१४):

Screenshot 2020-04-25 at 1.12.13 PM
स्रोत- फ्लुराईड ऍक्शन नेटवर्क, अधिक नकाशे इथे

भूजलामध्ये साधारणपणे खोलवरच्या भूजलधारकांमध्ये फ्लुराईडचे प्रमाण जास्त आढळते. त्यामुळे बोअरवेल मध्ये फ्लुराईड जास्त असल्याचे दिसून येते. अधिक खोलवर असलेले पाणी उपसून आपण ते वापरले तर फ्लुरोसिस म्हणून रोग होऊ शकतो. लहान मुलांमध्ये अनेकदा दात पिवळे पडलेले दिसतील तेव्हा त्यांना डेंटल फ्लुरोसिस झालेले असू शकते.  त्यामुळे त्यांच्या दातांच्या विकासावर परिणाम होऊ शकतो. मोठ्या माणसांमध्ये स्केलेटल फ्लुरोसिस होण्याची शक्यता असते. सगळे शरीर विशेषतः हाडं आणि सांधे कमकुवत होतात आणि व्यक्तीला अनेक कामं करता येत नाहीत. अर्थात सगळ्यांवर त्यांच्या त्यांच्या शाररिक रचनेनुसार याचे परिणाम होतात. महत्वाची गोष्ट म्हणजे यावर कुठलाच उपचार नाही. औषध, इंजेक्शन नाही. त्यामुळे त्याचे परिणाम कमी करायचे असतील किंवा फ्लुरोसिस होण्यापासून टाळायचे असेल तर खालील काही गोष्टी कराव्या-

१. त्या स्रोताचे पाणी पिण्यापासून टाळावे.

२. चांगला आहार घ्यावा. अनेकदा आहारामध्ये कॅल्शिअम आणि क जीवनसत्वाची कमी असल्या कारणाने (विशेषतः गरीब कुटुंबांमध्ये) फ्लुराईडचा त्रास जास्त होऊ शकतो. त्यामुळे योग्य आहाराने फ्लुरोसिस चे परिणाम टाळता येऊ शकतात किंवा असलेल्या आजाराचे व्यवस्थापन करता येते.

पाण्यातील फ्लुराईड तपासणीसाठी देखील अनेक किट आहेत. वर नमूद केलेल्या ट्रेसर मधील एका मॉडेल मध्ये देखील फ्लुराईडची तपासणी करता येते. पण आम्ही वापरलेले सगळ्यात चांगले असे फिल्ड टेस्ट किट म्हणजे नागपूरच्या एल-टेक सिस्टिम्स या कंपनीने निर्माण केलेले किट. हे किट वापरणे अगदी सहज सोपे असते. प्रति लिटर १.५ मिलिग्रॅम पेक्षा जास्त फ्लुराईड हे आरोग्यास घटक असते. त्यामुळे फ्लुराईडचे प्रमाण त्यापेक्षा कमी आहे ना हे तपासून घेण्यासाठी या किटचा वापर करावा. किट कॉलोरिमेट्रिक पद्धतीने वापरले जाते म्हणजेच सॅम्पल च्या रंगावरून आपण ठरवू शकतो की त्यामध्ये किती फ्लुराईड आहे. त्यासाठी एक मार्गदर्शक पट्टी देखील सोबत दिली जाते. या किट मध्ये गुलाबी पाणी असल्यास ते पाणी पिण्यास उपयुक्त आहे (फ्लुराईड बाबतीत) आणि जर रंग नारंगी किंवा फिकट नारंगी झाला तर ते पाणी पिण्यास टाळावे हा सरळ संदेश आपण गावातील लोकांना, त्या स्त्रोताच्या वापरकर्त्यांना तिथल्या तिथे देऊ शकतो. अर्थात याची खातरजमा करण्यासाठी आपण नंतर लॅब मध्ये देखील तपासून घेऊ शकतो.

या किट मध्ये एक काचेची नळी, फ्लुराईडचे रिएजंट आणि माप पट्टी असते. ४ मिलिलिटर (मिली) सॅम्पल घेऊन त्यात १ मिली रिएजंट टाकायचे, मिनिटभर थांबायचे आणि मग रंगपट्टीवर रंगाची तपासणी करायची. अशी सरळ सोप्पी प्रक्रिया आहे.

फ्लुराईड बद्दल हे लक्षात घेतले पाहिजे की ते एक नैसर्गिक प्रदूषक आहे. फ्लुराईड अनेक खडकांचा घटक असल्याकारणाने जेव्हा बोअरवेल किंवा इतर भूजल स्त्रोताच्या माध्यमातून आपण त्या खडकांमधील पाणी वापरू तेव्हा आपल्याला त्यामध्ये फ्लुराईड आढळेल. त्याउलट नायट्रेट हे एक मानवनिर्मित प्रदूषक आहे. हा महत्वाचा फरक लक्षात घेतला पाहिजे. आपल्या देशातील दुसरा मोठा नैसर्गिक प्रदूषक म्हणजे अर्सेनिक घटक. हे विशेषतः गंगेच्या आणि ब्रह्मपुत्रेच्या खोऱ्यामध्ये जास्तप्रमाणात भूजलामध्ये आढळते (बिहार, पश्चिम बंगाल, उत्तर प्रदेश, आसाम, बांगलादेश, इ.). फ्लुराईडपेक्षा अनेक दुर्धर आजार यामुळे होतात.

गावामध्येच करण्यात आलेली फ्लुराईड आणि नायट्रेटची चाचणी

४. नायट्रेट

नायट्रेट म्हणजेच नायट्रोजन घटकाचा एक प्रकार आपल्या इथे अनेक ठिकाणी पाण्यामध्ये आढळतो. गेल्या काही दशकांमध्ये शेतीमध्ये आमूलाग्र बदल झाले आहे. आज आपला देश हा धान्याच्या बाबतीत अनेक अंशी स्वयंपूर्ण आहे याचे कारण १९७० च्या दशकामध्ये होऊ घातलेली हरित क्रांती. हरित क्रांतीचा फॉर्मुला सरळ होता- शेतकऱ्यांच्या हातामध्ये सुधारित वाण द्या, त्याला लागणारे पाणी त्याच्यापर्यंत पोहोचवा, आणि सगळ्यात महत्वाचे म्हणजे सबसिडी पद्धतीने त्याला खत द्या. खतांचा वापर अनेक वर्ष झाल्यामुळे आज आपल्याला याचे विविध परिणाम दिसू लागले आहेत. रासायनिक खत असल्यामुळे याने जमिनीचा कस निघून गेलाय आणि आता खूप जास्त प्रमाणात हे पदार्थ पाण्यात आढळू लागले आहेत. भूजलामध्ये देखील आता नायट्रेट आढळून येते. पाण्यामध्ये नायट्रेटची दुसरा स्रोत म्हणजे संडासच्या टाक्यांमधून गळणारे पाणी. संडासचे (सेप्टिक टॅंक) बांधकाम चांगले झाले नसेल तर तिथूनदेखील नायट्रेटचा धोका नाकारता येणार नाही. उघड्यावर शौचाला जाणे तसेच प्राण्यांची विष्ठा हे देखील नायट्रेटचे स्रोत बनू शकतात.

भारतामध्ये पिण्याच्या पाण्यामध्ये नायट्रेटची मान्यता ही ४५ मिलिग्रॅम प्रति लिटर आहे. त्यापेक्षा जास्त नायट्रेटची धोका मानवी शरीराला आहे. विशेषतः लहान मुलांना याचा धोका सगळ्यात जास्त असतो कारण त्यांची पचन यंत्रणा विकसित झाली नसल्याकारणाने नायट्रेटचे रूपांतर नायट्राइट मध्ये होते आणि त्यामुळे मिथेमोग्लोबीनेमिया असा भयंकर रोग होऊ शकतो. यामध्ये रक्तातील हिमोग्लोबिनचे (जे ऑक्सिजन वाहनाचे काम करते)  रूपांतर मिथेमोग्लोबीन मध्ये होते आणि म्हणून रक्ताच्या ऑक्सिजन वाहन क्षमतेवर परिणाम होतो. ह्याने जीवाला धोका उत्पन्न होऊ शकतो. मोठ्या व्यक्तींमध्ये हे मिथेमोग्लोबीन हिमोग्लोबिन मध्ये परत परिवर्तित करण्याची क्षमता असते जी लहान बाळांमध्ये नसते.

नायट्रेट तपासणीसाठी देखील अनेक यंत्र आणि उपकरण तसेच किट उपलब्ध आहेत. आम्ही यासाठी देखील एल-टेक सिस्टिम्सने बनवलेले किट वापरले आहे. ते वापरायला सोपे आहे आणि एक किटची किंमत ही १२०० रुपये आहे (ब्लॉग लिहित्यावेळी). त्यामध्ये १०० सॅम्पल तपासता येतात म्हणजेच १२ रुपयाला एक टेस्ट पडते. फ्लुराईडप्रमाणे ही देखील रंगावर आधारित टेस्ट आहे.

५. जैविक प्रदूषण  

जगभरातील पिण्याच्या पाण्याच्या बाबतीत सगळ्यात महत्वाची बाब म्हणजे त्यामध्ये आढळणारे जैविक प्रदूषण. पाणी साठावंतांना, त्याचा पुरवठा करतांना, ते विहिरीवरून, माळावरून भरतांना आणि त्यानंतर हंड्यामध्ये किंवा एखाद्या पिंपामध्ये साठवून ठेवतांना हे प्रदूषण होऊ शकते. असंख्य प्रकारचे जिवाणू, विषाणू पाण्यामध्ये सापडू शकतात आणि त्याचा खूप विपरीत परिणाम मानवी जीवनावर होऊ शकतो. लहान बाळांमध्ये, मुलं-मुलींमध्ये, प्रौढ आणि वयस्कर व्यक्तींमध्ये याचे परिणाम सापडू शकतात. काही छोटेमोठे आजार तर काही दुर्धर आजार देखील त्यामुळे होऊ शकतात.

आपल्या पिण्याच्या पाण्यामध्ये जैविक प्रदूषण आहे की नाही हे जाणून घेण्यासाठी अगदी सोप्पी चाचणी स्थानिक पातळीवर करता येऊ शकते. त्याला एचटूएस फिल्ड टेस्ट म्हणतात. कापसाच्या/कागदाच्या एका बोळ्यावर H2S रसायन असलेल्या एक छोट्याश्या बाटलीमध्ये आपण पाण्याचे सॅम्पल घ्यायचे आणि मग २४ तास ते ठेऊन द्यायचे. थेट उन्हाच्या संपर्कात येणार नाही याची काळजी घ्यावी. २४ तासानंतर जर पाणी काळे पडले तर समजावे की पाण्यामध्ये खूप जैविक प्रदूषण आहे. किती जैविक प्रदूषण आहे हे आपल्याला यामध्ये कळत नाही- फक्त प्रदूषण आहे की नाही इतकेच कळते. एक प्रकारे याला इंडिकेटर टेस्ट म्हणतात. असे सगळे नमुने नंतर लॅब मध्ये तपासून घेता येतात. याचा सगळ्यात मोठा फायदा म्हणजे ग्राम पंचायतीला लगेच अनेक निर्णय घेता येतात- नक्की किती टी.सी.एल पावडरचा वापर करावा, कोणत्या स्रोतातून पिण्यासाठी पाणी वापरावे, कोणते स्रोत टाळावे हे या आधारावर ठरवता येतं.

एल-टेक सिस्टिमची एक बाटली २० ते ३० रुपयांपर्यंत मिळते. अनेक कॉलेजमध्ये हे अगदी सोप्प्या पद्धतीने बनावट येऊ शकते. त्यासाठी जास्त सामग्री लागत नाही पण त्याहून मिळणारे फायदे अनेक आहेत. युनिसेफ ने अनेक राज्य सरकारांबरोबर ह्या बाटल्या प्राथमिक आरोग्य केंद्रावर पुरवण्याचा प्रयत्न केला आहे. काही ठिकाणी त्या आजदेखील मिळतात.

सुरक्षित पेयजलाच्या दिशेने 


बीड मधील एका गावामध्ये जैविक प्रदूषणाची माहिती घेतांना ग्रामस्थ

आपल्याला सर्वांना जर सुरक्षित पेयजल पुरवायचे असेल तर आपल्या पाण्याची गुणवत्ता नक्की काय आहे याची माहिती होणे आवश्यक आहे. ही माहिती योग्य वेळी, योग्य ठिकाणी उपलब्ध असल्यास त्याचा वापर करून स्थानिक निर्णयकर्ते, ग्रामस्थ, कुटुंब योग्य निर्णय घेतील किंवा निदान त्या दिशेने पुढे जाण्याचा त्यांचा प्रयत्न असेल अशी अशा आहे. असे म्हणतात की हे माहितीचे युग आहे, पण माहिती कोणाच्या हाती आहे आणि त्याचे विश्लेषण करण्याची क्षमता त्यांच्याकडे आहे का हे महत्वाचे ठरते. फिल्ड टेस्ट किट हे नक्कीच त्यादिशेने, किंबहुना लोकविज्ञान्याच्या दिशेने एक महत्वाचे पाऊल आहे हे नक्की!

आभार– अनेक लोकांबरोबर काम करण्याची संधी मिळाली म्हणून ही मांडणी शक्य आहे. ग्रामस्थ, ACWADAM मधील सहकारी यांचे विशेष आभार.